

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 47 (2006) 1141-1144

Pd-catalyzed thiocarbamoylation of terminal alkynes with sulfenamide and carbon monoxide

Hitoshi Kuniyasu,* Tomohiro Kato, Shigehito Asano, Jia-Hai Ye, Takumi Ohmori, Masaki Morita, Hiroshi Hiraike, Shin-ichi Fujiwara, Jun Terao, Hideo Kurosawa and Nobuaki Kambe*

Department of Molecular Chemistry & Frontier Research Center, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

> Received 15 November 2005; revised 1 December 2005; accepted 5 December 2005 Available online 28 December 2005

Abstract—Regio- and stereoselective thiocarbamoylation of terminal alkynes successfully took place using 2,4,5-tri-Cl-C₆H₂SNEt₂ as a reaction substrate and PdCl₂(PPh₃)₂/PPh₃/*n*-Bu₄NCl as a catalyst system. © 2005 Elsevier Ltd. All rights reserved.

Various types of S-X activations (X: element or functional group) with the aid of transition metal complexes have been accomplished in the past decade.¹ On the other hand, sulfenamides ($\mathbb{R}^1 SN\mathbb{R}^2\mathbb{R}^3$; 1), which possess S–N bond with unique S^{δ^+} and N^{δ^-} polarity have been utilized as reagents to introduce an \mathbb{R}^1S or an $\mathbb{R}^2\mathbb{R}^3N$ group in organic synthesis, additives in rubber industry, and insecticides and fungicides in the agrichemical industry.² In 1999, we have succeeded in demonstrating that azathiolation of CO by 1 was smoothly catalyzed by Pd-complex to afford thiocarbamate (R¹SC(O)- $NR^{2}R^{3}$; 2), showing that 1 had great potential for the substrate of transition metal-catalyzed S-X activation.³ Since then, Kondo and Mitsudo et al. have reported that Ru-complexes smoothly catalyzed the regio- and stereoselective azathiolation of alkynes by $1.^{4}$ Furthermore, Meyer and Knapton have reported that Pd-catalyzed regio- and stereoselective selenocarbamoylation of terminal alkynes (3) was achieved using 1, CO, and $(PhSe)_2$.⁵ Although this reaction is very fascinating, since PhSe and R²R³NC(O) groups were simultaneously introduced into alkynes by a single process, the formation of many by-products remains as a significant drawback with respect to the atom economy. As to the intramolecular Pd-catalyzed thio- and selenocarbamoylation, we have recently found that the desired transformation was facilely realized by $Pd(PPh_3)_4$ as a catalyst using thio- and selenocarbamate.⁶

Herein, we wish to report on the efficient intermolecular Pd-catalyzed thiocarbamoylation of **3** employing **1** and CO as reaction substrates under dichalcogenide-free reaction conditions. First, we have examined the reaction of PhSNEt₂ (**1a**, 1.2 mmol) with 1-octyne (**3a**, 1.0 mmol) in pressurized CO (20 kg/cm²) using [Pd(SPh)₂(PPh₃)]₂ (**4a**, 0.01 mmol) and PPh₃ (0.02 mmol) as catalysts in CH₃CN (0.5 mL) at 120 °C for 3 h (entry 1 of Table 1).

Although complex 4a has been proved to be an active catalyst for the azathiolation of CO³, the conversion of 1a was low (11%) and anticipated thiocarbamovlation product 5a was produced only in 4% yield with E/Z = 25/75 together with 6% of thiocarbamate 2a.⁷ Although intramolecular thiocarbamoylation by thiocarbamate was successfully catalyzed by Pd(PPh₃)₄ (4b),⁶ the yield of 5a was poor (5%) with low conversion of 1a (30%) in this reaction system (entry 2). The employment of $PdCl_2(PPh_3)_2$ (4c) with an expectation of better carbonylative addition to alkyne also resulted in a miserable result (entry 3).8 Then the effects of a variety of catalysts, ligands, solvents, and additives were next examined. Among those screened,9 the reaction performed using 4c (2 mol %) as a catalyst precursor, PPh₃ (0.04 mmol) and *n*-Bu₄NCl (0.08 mmol) as additives in CH₃CN (0.5 mL) and CO (20 kg/cm^2) resulted in the best yield of 5a (57%) (entry 4).

^{*}Corresponding author. Tel.: +81 1668 797389; fax: +81 1668 797390; e-mail: kuni@chem.eng.osaka-u.ac.jp

^{0040-4039/\$ -} see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.12.016

Table 1. Pd-catalyzed thiocarbamoylation of 3a by 1a^a

Entry	4	PPh ₃ (mmol)	Salt ^b	5a (%) ^c E/Z	2a (%) ^c
1	$[Pd(SPh)_2(PPh_3)]_2$] 4a	0.02	_	4 (25/75)	6
2	$Pd(PPh_3)_4$ 4b		_	5 (20/80)	7
3	$PdCl_2(PPh_3)_2$ 4c		_	11 (18/82)	50
4	4c	0.04	n-Bu ₄ NCl	57 ^d (41/59)	37
5	4c	0.04	_	34 (34/66)	25
6	4c	_	n-Bu ₄ NCl	27 (44/56)	45
7	4c	0.04	NaCl	31 (24/76)	31
8	4c	0.04	Et ₄ NCl	7 (29/71)	80
9	4c	0.04	CaCl ₂	17 (29/71)	80

^a Conditions: **1a** (1.2 mmol), **3a** (1.0 mmol), **4** (0.02 mmol of Pd), CO (20 kg/cm²), and CH₃CN (0.5 mL) at 120 °C for 3 h.

^b 0.08 mmol.

^c NMR yield.

^d Isolated yield.

Elimination of either *n*-Bu₄NCl or PPh₃ decreased the yields of **5a** (entries 5 and 6). On the other hand, the employment of NaCl, Et₄NCl, and CaCl₂ instead of *n*-Bu₄NCl also brought about lower yield of **5a** (entries 7–9). Although the yield of **5a** was increased, unlike the case of selenocarbamoylation,⁵ a mixture of stereo-isomers (E/Z = 41/59) was generated and the yield of **5a** was still unsatisfactory.

To anticipate improvement of the efficiency of the intermolecular thiocarbamoylation, the effects of substituents in Ar of 1 were next examined (Table 2). Clearly, electron-donating groups significantly suppressed the thiocarbamoylation, while electron-withdrawing groups hardly improved the yield of 5 (entries 2, 4, and 6). It is worth noting that the introduction of substituents at the ortho position showed a more remarkable effect. Although 2-Me (1c) hampered the formation of desired **5c**, the substrate with 2-Cl (1e) afforded **5e** in 73% yield with E/Z = 18/82 (entries 3 and 5). Moreover, it was found that the reaction using 2,4,5-tri-Cl-C₆H₂SNEt₂ (1g) produced the desired **5g** in 86% isolated yield with high Z-selectivity (E/Z = 2/98) (entry 7).¹⁰ On the other hand, di-Cl substituents such as 2,4, 2,5, 2,6-di-Cl were less effective than 1g for the formation of **5** (entries 8–10). The results of Pd-catalyzed thiocarbamoylation of some terminal alkynes with 1g and CO under the present optimized conditions were summarized in Table 3.

While the Pd-catalyzed selenocarbamoylation was not applicable to phenyl acetylene (**3b**) or the alkyne with a hydroxyl group,⁵ **3b**, 4-MeC₆H₄CCH (**3c**), and

Table 2. Effect of substituents in 1 on the thiocarbamoylation of $3a^{a}$

$\begin{array}{rcl} \text{PPh}_{3} \\ \text{ArSNEt}_{2} + 3a + \text{CO} & \xrightarrow{n-\text{Bu}_{4}\text{NCl}} & 5 \\ 1 & & \text{CH}_{3}\text{CN} \end{array}$									
Entry	Ar	1	Yield of 5 (%) ^b		(E/Z)				
1	Ph	1 a	5a	57	(41/59)				
2	$4-MeC_6H_4$	1b	5b	20	(15/85)				
3	$2-MeC_6H_4$	1c	5c	8	(50/50)				
4	$4-ClC_6H_4$	1d	5d	59	(31/69)				
5	$2-ClC_6H_4$	1e	5e	73	(18/82)				
6	$4-CF_3C_6H_4$	1f	5f	64	(20/80)				
7	2,4,5-Tri-Cl-C ₆ H ₂	1g	5g	86 ^c	(2/98)				
8	2,4,Di-Cl-C ₆ H ₃	1h	5h	68	(9/91)				
9	2,5-Di-Cl-C ₆ H ₃	1i	5i	61	(10/90)				
10	2,6-Di-Cl-C ₆ H ₃	1j	5j	37	(4/96)				

cat. 4c

^a Conditions: 1 (1.2 mmol), 3a (1.0 mmol), CO (20 kg/cm²), 4c (0.02 mmol), PPh₃ (0.04 mmol), *n*-Bu₄NCl (0.08 mmol), and CH₃CN (0.5 mL) at 120 °C for 3 h.

^bNMR yield.

^c Isolated yield.

Table 3. Pd-catalyzed thiocarbamoylation of 3 by 1g^a

^a Unless otherwise noted, 1.2 mmol of 1g, 1.0 mmol of 3, 4c (0.02 mmol), PPh₃ (0.04 mmol), *n*-Bu₄NCl (0.08 mmol), and CO (20 kg/cm²) in CH₃CN (0.5 mL) at 120 °C for 3 h.

^b 2.0 mmol of **1g**.

 $HO(CH_2)_3CCH$ (3d) smoothly underwent the thiocarbamovaltion to give the corresponding β -sulferly acrylamide derivatives 5k, 5l, and 5m in good yields with high Z-selectivity (entries 1-3). Other functional groups such as -CN, -CH₂Ph, and -NMe₂ were also tolerant toward the present thiocarbamoylation and double thiocarbamoylation occurred when 1,7-octadiene (3h) was employed (entries 4–7). The acetylene (3i) bearing a tethered ene unit underwent chemoselective reaction at the triple bond (entry 8). A possible reaction pathway of the present Pd-catalyzed thiocarbamovlation is depicted in Scheme 1. We wish to propose that the complex with the formula $PdCl(SAr)(PPh_3)_n$ (6) be an active catalyst for intermolecular thiocarbamoylation of terminal alkynes 3.11,12 The cis-insertion of 3 into the S-Pd bond would produce vinylpalladium 7,13 which would resist the C-Cl bond-forming reductive elimination due to the thermodynamic disadvantage. The insertion of CO into the resultant C-Pd bond would follow to afford

Scheme 1. A proposed reaction pathway of thiocarbamoylation of 3.

acylpalladium 8 and subsequent σ -bond metathesis between Pd–C of 8 and N–S bond of 1 through transition state 9 to furnish the thiocarbamoylation product 5 with the regeneration of 6. The roles of addition of *n*-Bu₄NCl and PPh₃ are not clear at the moment but one possibility is that these additives suppress the formation of catalytically less active Pd(SAr)₂(PPh₃)₂ and more polymeric Pd(SAr)₂(PPh₃)_n.

In summary, this letter demonstrated that the intermolecular Pd-catalyzed thiocarbamoylation of terminal alkynes by sulfenamide and CO was successfully realized using 2,4,5-tri-Cl-C₆H₂SNEt₂ as the reaction substrate and PdCl₂(PPh₃)₂/PPh₃/*n*-Bu₄NCl as the catalyst system. The scope and limitations of the present reaction system as well as the details about the reaction mechanism are now in progress.

Acknowledgment

Thanks are due to the Instrumental Analysis Center, Faculty of Engineering, Osaka University, for assistance in obtaining mass spectra with a JEOL JMS-DX303 instrument.

References and notes

 (a) Kuniyasu, H. In Catalytic Heterofunctionalization; Togni, A., Grützmacher, H., Eds.; Wiley-VCH: Weinheim, 2001; Chapter 7; (b) Han, L.-B.; Tanaka, M. Chem. Commun. 1999, 395; (c) Beletskaya, I.; Moberg, C. Chem. Rev. 1999, 99, 3435; (d) Ogawa, A. In Main Group Metals in Organic Synthesis; Yamamoto, H., Oshima, K., Eds.; Wiley-VCH: Weinheim; pp 813–866; (e) El Ali, B.; Alper,
H. In Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley-Interscience: New York, 2002; Chapter VI. 2. 1. 1. 2; (f) Ogawa, A. In Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley-Interscience: New York, 2002, Chapter VII. 6; (g) Kondo, T.; Mitsudo, T. Chem. Rev. 2000, 100, 3205; (h) Ogawa, A. J. Organomet. Chem. 2000, 611, 463.

- 2. Craine, L.; Raban, M. Chem. Rev. 1989, 89, 689.
- Kuniyasu, H.; Hiraike, H.; Morita, M.; Tanaka, A.; Sugoh, K.; Kurosawa, H. J. Org. Chem. 1999, 64, 7305.
- Kondo, T.; Baba, A.; Nishi, Y.; Mitsudo, T. Tetrahedron Lett. 2004, 45, 1469.
- (a) Knapton, D. J.; Meyer, T. Y. J. Org. Chem. 2005, 70, 785; (b) Knapton, D. J.; Meyer, T. Y. Org. Lett. 2004, 6, 687.
- Toyofuku, M.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2005, 127, 9706.
- 7. The stereo- and regiochemistry of **5a** were determined by the NOE experiment and the synthesis of a mixture of stereoisomers of **5a** by the reaction of (Z)-1,3-bis(phenyl-thio)-2-nonen-1-one with Et₂NH.
- Kuniyasu, H.; Ogawa, A.; Miyazaki, S.; Ryu, I.; Kambe, N.; Sonoda, N. J. Am. Chem. Soc. 1991, 113, 9796.
- Catalyst: PdBr₂(PPh₃)₂, PdI₂(PPh₃)₂, PdCl₂(AsPh₃)₂, PdCl₂(SbPh₃)₂, PdCl₂[P(*o*-tolyl)₃]₂, PdCl₂(dppf), PdCl₂-(dppe), PdCl₂(PCy₃)₂, and PdCl[P(OPh)₃]₂ in CH₃CN; ligand: P(OMe)₃, P(OEt)₃, P(2-furyl)₃, and P(*o*-tolyl)₃ with the combined use of Pd(dba)₂; solvent: C₆H₆, xylene, THF, dioxane, pyridine, CH₃CN, and N-methylmorpholine in the presence of **4c**; additive: *n*-Bu₄NCl, NaCl, CaCl₂, and CaH₂ in the presence of **4c**.
- 10. Spectral data of **5g**: *Z*-isomer. Yellow oil; ¹H NMR (400 M Hz, CDCl₃) δ 0.84 (t, *J* = 7.2 Hz, 3H), 1.08–1.26

(m, 12H), 1.36-1.46 (m, 2H), 2.12 (t, J = 7.6 Hz, 2H), 3.38(q, J = 7.2 Hz, 2H), 3.45 (q, J = 7.1 Hz, 2H), 6.28 (s, 1H),7.67 (s, 1H), 7.70 (s, 1H). NOE study: Irradiation of vinyl singlet at δ 6.28 resulted in 2.1% increase at δ 2.12 (methylene triplet); ¹³C NMR (100 M Hz, CDCl₃) δ 13.3, 14.1, 14.7, 22.5, 28.6, 28.8, 31.4, 36.8, 40.1, 42.6, 118.0, 130.9, 132.6, 133.0, 136.2, 136.8, 149.8, 165.4; IR (NaCl) 2958, 2930, 2857, 1633, 1574, 1434, 1379, 1361, 1315, 1260, 1221, 1151, 1114, 1059, 889, 868, 818 cm⁻¹; mass spectrum (EI) *m/e* 423 (M⁺, 13%), 351 (12%), 210 (100%), 100 (8%); Anal. Calcd for C₁₉H₂₆Cl₃NOS: C, 53.97; H, 6.20; N, 3.31. Found: C, 54.01; H, 6.35; N, 3.35. E-Isomer. Yellow oil; 8.4 mg, 2%, ¹H NMR (400 M Hz, CDCl₃) δ 0.80 (t, J = 6.8 Hz, 3H), 0.96 (t, J = 7.2 Hz, 3H), 1.05 (t, J = 7.2 Hz, 3H), 1.08–1.28 (m, 8H), 2.55 (t, J = 7.6 Hz, 2H) 3.13 (q, J = 7.1 Hz, 2H), 3.30 (q, J = 6.9 Hz, 2H), 5.52 (s, 1H), 7.54 (s, 1H), 7.57 (s, 1H); ¹³C NMR (100 M Hz,CDCl₃) δ 13.3, 14.2, 14.4, 22.7, 29.10, 29.13, 31.7, 32.9, 40.0, 42.6, 118.4, 131.1, 131.2, 131.6, 133.8, 136.6, 149.8, 164.8, IR (NaCl) 2930, 2857, 1634, 1435, 1379, 1321, 1259, 1221, 1150, 1116, 1060, 874 cm⁻¹; mass spectrum (EI) m/e 421 (M⁺, 10%), 351 (9%), 320 (9%), 210 (100%), 100 (17%); exact mass (M^+) calcd for C₁₉H₂₆Cl₃NOS; 421.0801 Found; 421.0796.

- 11. The oxidative addition of **1g** to Pd(0) did not take place in CD₃CN.
- 12. One possible explanation for giving **5** efficiently by employing **1g** is the stability of **6g** against disproportionation. Actually, the reaction of $PdCl_2(PPh_3)_2$ with $Pd(SAr)_2(PPh_3)_2$ (Ar = 2,4,5-tri-Cl-C₆H₂) in C₆D₆ afforded suspected **6g** in 89% yield after 2.5 h at 25 °C.
- 13. We have already reported that the insertion of DMAD into the S–Pd bond of Pd(SAr)₂(DPPE) furnished vinyl-palladium, see: Sugoh, K.; Kuniyasu, H.; Kurosawa, H. *Chem. Lett.* **2002**, 106.